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On the cellular patterns in thermal convection 

By J .  T .  STUART 
National Physical Laboratory, Teddington, Middlesex 

(Received 20 April 1963 and in revised form 16 September 1963) 

In  the theory of thermal convective instability between two horizontal planes 
there are many solutions that are periodic in the horizontal co-ordinates, while 
in experiment convection is observed to take place in cellular patterns. It is 
often assumed, or decided after insufficient argument, that the periodic solu- 
tions of the mathematical model ‘explain’ or correspond to these patterns, but 
a completely satisfactory discussion of this correspondence has not been given. 
Indeed, with certain mathematical solutions ambiguities arise as to what cell 
centres and cellular boundaries are. A detailed discussion has recently become 
especially necessary because attempts are being made to predict which particular 
cellular pattern will occur in given experimental conditions. 

In this paper the topic is studied afresh and the question is asked: what 
features, in the mathematical model, correspond to what an experimentalist 
observes in cellular convective motion? In answer a definition of a cell is formu- 
lated which relates certain surfaces in the flow field of the mathematical model 
to steady vertical cellular boundaries that are observed in experiment, and which 
shows where the cell centres lie. In  particular the classical hexagonal cellular 
pattern, of the mathematical model, is shown to be the prototype pattern of 
what is experimentally observed. On the other hand the square and so called 
‘rectangular’ cases of linearized theory are shown not to correspond truly to 
square and rectangular cells at  all. The new formulation is especially relevant 
to theoretical work on the prediction of cell shape and direction of flow in cells, 
since precise knowledge of the shapes of the cellular boundaries and locations of 
cell centres is essential if predictions are to be compared with observation. 

1. Introduction 
In  the theory of thermal convection between two horizontal planes, it is known 

that there are many possible velocity and temperature fields that are periodic 
in both of the horizontal co-ordinates. It is generally assumed that such solu- 
tions correspond to the convection cells observed by BBnard (1901) and many 
later experimenters. However, a conclusive discussion of the precise corre- 
spondence between the theoretical periodic solutions and the observed cellular 
patterns does not seem to have been given. Indeed, except for Avsec (1939, 
p. 148), who pointed out that theoretical ambiguities can arise, most theoretical 
workers in the field do not seem to have considered that any problem exists. An 
attempt is made here to expose the problem, and to expound in terms of mathe- 
matical models just what i t  is that experimentalists see. It is emphasized that 
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a discussion of cellular patterns in a mathematical model is only relevant in 
terms of features that are actually observed in convection patterns, and the 
interpretation of a model must consider those features: the mere fact of period- 
icity in model and experiment is not suf€icient correlation. Moreover, an exposi- 
tion is essential now that attempts are being made theoretically, by means of 
non-linear mechanics, to predict the cell shapes that occur in experiment (e.g. 
those of Tippelskirch 1956). 

There are two theories which predict the conditions under which convection 
takes place. One, initiated by Rayleigh (1916)) ascribes the convection to the 
instability associated with a density gradient in the gravitational field. In- 
stability due to this cause can occur whether the boundary conditions a t  the 
confining planes be no-slip (rigid boundary) or zero shear stress (free surface). 
When the fluid is a liquid and has one free surface, however, Pearson’s (1958) 
theory shows that instability can also occur independently of the gravitational 
field, because of the variation of surface tension with temperature. There seems 
little doubt that both theories account for important aspects of the experimental 
evidence; but from the present point of view we can treat them together, since 
they both assume solutions of similar form with periodicities in the horizontal 
co-ordinates. We shall use terminology associated with Rayleigh’s theory. 

Much of the early theoretical work on the subject was concerned with pre- 
dicting the critical temperature difference (or Rayleigh number) above which 
convection may take place, and for a comprehensive account the reader is 
referred to Chandrasekhar’s (1961) book. Such calculations fall within the pro- 
vince of linearized theory, which does not predict the equilibrium velocity ampli- 
tude attained by the convective motion or the shape of convection cell most 
likely to occur. The prediction of such features under given conditions un- 
doubtedly lies within the province of the non-linear mechanics of thermal con- 
vection. 

It is necessary to recapitulate some of the basic ideas of the non-linear theory, 
and for this purpose the writer will make reference to a survey article (Stuart 
1960); this will be done in the form ‘I), followed by page numbers. It has been 
shown (I, pp. 68, 69) that, for Rayleigh numbers just above the critical value, 
the convective flow has a spatial form which is dominantly that of linearized 
theory; the amplitude of the convection, however, is not an exponential function 
of time, as it is in linearized theory, but rather is bounded above and exhibits 
an equilibrium amplitude towards which the flow tends with the passage of 
time. These features are indicated by I (equations (2.4), (2.6)) (2.7)) when 
the amplification rate, which is proportional to the difference between the 
actual and critical Rayleigh numbers, tends to zero. To summarize we may say 
that the solution of the non-linear problem is almost equivalent spatially to 
that of linearized theory, but with the vital difference that the amplitude of the 
non-linear solution becomes steady and finite instead of being exponentially 
dependent on time. It is this strong spatial connexion between the linear and 
lion-linear theories which gives importance to a detailed study of the notion of 
cell in the linearized problem. 

An additional feature of linearized theory is that many possible spatial 
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patterns (‘cell shapes’) are equally likely. A discussion of the question of prefer- 
ment of cell shape, through the action of non-linearity and variation of viscosity 
with temperature, is given in I (pp. 74-6)’ by reference to work of Palm (1960), 
and this is developed further by Segel & Stuart (1962). The results given there 
are realistic in comparison with observation, namely that in certain circum- 
stances the hexagonal cell is the preferred mode, with fluid at the cell centres 
flowing in the direction of increasing kinematic viscosity. We emphasize here 
that in such work it is essential to know precisely the locations of cell centres 
and cellular boundaries of the mathematical model, if meaningful predictions 
are to be made for comparison with observation. 

Let us turn now to the experimental facts. It seems to be agreed among 
experimental workers that, in most liquids, fluid rises at  the centre of each cell 
and descends at the boundaries, with reverse behaviour in gases. The thing we 
wish to emphasize here is not the direction of flow, which is to some extent a 
side issue allowing separate study; but rather that, on the (vertical?) surfaces 
which are observed and described as cellular boundaries, the vertical velocity 
apparently has the same sign everywhere. If we are to ascribe observational 
meaning to a mathematical model, we must introduce this feature into the theory. 
Another observational feature, that no fluid particle flows through a cellular 
boundary, has been already incorporated in the theory. 

We now refer in detail to some experimental work. In  air, smoke is often used 
to visualize convection cells. In  the experiments of de Graaf & van der Held 
(1953), for example, the authors say that ‘In the smoke lying on the bottom 
circles appeared which. . .became hexagons. The smoke ascended along the 
boundaries’. It is presumably the presence of smoke in the neighbourhood of 
the boundaries only which renders the boundaries visible in this early phase. 
When, later, the smoke has diffused throughout the cell, the boundaries are not 
rendered so clearly visible by the smoke (Avsec 1939). 

In experiments with liquids Silveston (1958, see also Schmidt & Silveston 
1959) has used an optical method of visualizing the cell boundaries. Associated 
with the rising liquid at  the cell centres and descending liquid at  the cell bound- 
aries is a horizontal temperature gradient; the density is lower at the centres 
(because of the rising warm liquid) and higher a t  the boundaries. If a plane 
vertical beam of incident light is passed through the layer of fluid the light is 
deflected from the regions of low density towards regions of higher density. 
Thus the cellular boundaries show up brightly on the screen, while the cell 
centres are dark (Silveston 1958, figure 13). It is to be emphasized that the 
method relies on the rising fluid making the centres less dense, and the descend- 
ing liquid making the boundaries denser. Thus bright annular rings on the screen 
imply descending liquid everywhere at  the associated annular rings in t,he liquid 
layer; these regions can thus be described as cellular boundaries. In  the actual 
optical experiments it seems that the incident light was not vertical (Silveston 
1958), so the effects are modified. But Silveston’s paper implies that the above- 
described mechanism was important in his experiments. 

We see, therefore, that in both liquids and gases experimentalists observe, 
and describe as cellular boundaries, curves upon which the vertical velocity has 
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one sign only. In  his 1916 paper, Rayleigh recognized this feature, and applied 
it in an attempt to determine the cellular boundaries for a mathematical model 
of a square-cell pattern. In  so doing, he apparently overlooked an ambiguity, 
as was pointed out by Avsec (1939), and we shall return to this point later. Our 
aim throughout this paper is to inject the observational facts, as recorded above, 
into the theory in order to select from the geometrical flow pattern of a given 
solution those surfaces, if any, which can represent observed cellular boundaries. 
The question thus posed is: what features, in the mathematical model, correspond 
to what an experimentalist observes in cellular convective motion? 

2. Theoretical discussion 
In  order to answer the question posed, we need to discuss the geometrical 

pattern associated with a given solution of the convection equations. This can 
be done by considering the equations for the particle paths and filament (streak) 
lines as discussed for example, by Aris (1962) and by Stuart, Pankhurst & Bryer 
(1963), namely 

(2.1) 

where x and y are horizontal co-ordinates and z is the vertical co-ordinate; 
U ,  V ,  W denote the corresponding components of velocity. The streamlines are 
defined by (2.1) with dt = 0, i.e. with time ( t )  as a parameter. In  steady motion 
the particle paths and filament lines coincide with the streamlines; but in un- 
steady motion the streamlines are time-dependent and no longer necessarily 
coincide with particle paths or with filament lines. This is an important distinc- 
tion. In  general we see that any steady solution of (2.1), in the form of a fixed 
surface, is such that no fluid particles can flow through the surface at  any time. 
Such fixed surfaces, as solutions of (2.1), contain particle paths, filament lines 
and streamlines and, as we shall see, are of interest to us. 

For Rayleigh numbers (a) sufficiently close to the critical value ( 9 f c ) ,  (2.1) 
may have a simplicity that is not present in general. (For a discussion of a related 
water wave problem see Wehausen & Laitone 1960.) This simplifying feature 
stems from the nature of the simplest class of solutions in the limiting case of 
the non-linear problem, when 9 - 9 f c ,  which is proportional to the amplification 
rate a, tends to zero; for a single fundamental mode, W is predominantly of the 
form 

where ~ ( x ,  y )  and A(t )  are given by the solutions of 

axlu = a y p  = az/w = at, 

w = w x ,  Y ) f ( Z )  A(t) ,  (2 .1 )  

(2.3) 1 V2,zo+a2w = 0 where V2, 3 a2/i3x2+a2/ay2, 

(a+ O),  d A / d t  = A(a+a,A2+a,A4+ ...) 

a2 denoting the sum of the squares of the wave-numbers in the x and y-directions, 
and a,, a2, etc., denoting known constants. In the expression ( 2 . 2 ) ,  W is correct 
to order A ( t ) ,  where A ( t )  has magnitude d. Moreover, the O{A(t)} parts of 
U and V are given by 

(3.4) 
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where the prime denotes differentiation with respect to z. Substituting (2.2) and 
(2.4) in (2.1), and multiplying by a factor, we have 

( 2 . 5 )  

The form of ( 2 . 5 )  indicates that the spatial pattern is time-independent and that 
the streamlines are identical with the particle paths and filament lines; all can 
be calculated from (3.5). An additional important fact in the present case, how- 
ever, is that the first (x, y) equation, having coefficients independent of z, can be 
studied without reference to z. We have in fact 

(“6) 

Equation (2.6) has been used earlier by Bisshopp (1960) and Chandrasekhar 
(1961), but without explanation of its meaning and limitations (see below). 
From the solution of this equation, y ( x )  can be substituted into the (x, z )  equation 
of (2.5) and that equation can then be solved for z. The result is 

(2.7) 

where ~r,, yo, zo specify the streamline. Finally, t can be obtained in the form 

(2.8) 

The physical interpretation of this mathematics is that the particle paths, 
filament lines and streamlines lie on vertical cylindrical surfaces. The curves 
obtained by intersection of the cylinders with a horizontal plane will, for con- 
venience, be referred to as the ‘projected streamlines’; they are defined by (2.6). 
Formula (2.7) completes the description of the spatial pattern, and (2.8) predicts 
the time taken for a particle to go between two given positions. 

The orthogonal trajectories of the solutions of (2 .6 )  are the curves 

w = const. (2.9) 

awlan = 0, ( 2.10) 

Thus, on the projected streamlines, we have as a corollary 

where a /& denotes the derivative normal to the projected streamlines. Our 
object (for the simple class of flows (2.2)) is to discover which, if any, of these 
projected streamlines may be regarded as projections of the cellular boundaries. 
Especially we note that (2.10) must be valid on the cellular boundaries for this 
simple class of solutions. 

In  more general cases it may not be permissible to integrate the (x, y) equation 
of (2.1) separately. Consider, for example, a solution of the non-linear equations 
consisting of a summation of terms like (2.2) 

(3.21) 
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with corresponding expressions for U and V not necessarily related to (2.4). 
Moreover, the functions w,,(x,y) and AJt)  are not necessarily given by (1.3). 
Sincef,(z) depends, in general, on r ,  the (x, y)-equation of (2.1) cannot necessarily 
be integrated independently of z ;  nor, if A,  depends on r ,  can they be integrated 
independently of t .  Thus the streamlines, particle paths and filament lines do 
not necessarily lie on vertical cylindrical surfaces, nor are they iiecessarily 
coincident. 

There are, however, certain special cases when the simple projected-streamline 
theory is valid. Then a formula like (2.5) applies and an (x, y)-integration follows 
straightforwardly. But in such cases a Wjan is not necessarily equal to zero on 
the projected streamlines. Moreover, we shall note some cases when certain 
streamlines, particle paths and filaments lie on vertical cylindrical surfaces, even 
though this is not to be in all parts of the region of flow. In  the case considered 
later these vertical cylindrical surfaces can form the cellular boundaries. 

We shall now discuss the projected streamline patterns, governed by equation 
(2.6) and associated with some of the classical mathematical planforms of the 
theory of thermal convection. These have been discussed earlier by Bisshopp 
(1960) and Chandrasekhar (1961), but not, we believe, in a manner that is com- 
pletely satisfactory from an observational point of view. We again emphasize that 
the spatial patterns of linearized theory are identical with those of the non-linear 
theory, in the limit when the Rayleigh number tends to its critical value. In  
discussing the non-linear problem in this limit, therefore, we can simultaneously 
give an account of the linearized-theory problem discussed by Bisshopp and 
Chandrasekhar. Bisshopp’s paper is mainly concerned with a classification of 
cellular solutions of the membrane equation (2.3); we believe, however, that, the 
incidental remarks made there (pp. 379-8 1)  about ‘boundaries in an experimental 
situation,’ read in association with the figures l a ,  b,  are unhelpful and perhaps 
misleading from an observational point of view. 

We use co-ordinates and velocity components as defined earlier with 
lengths referred to h, the distance between the two horizontal bounding 
planes. As a weak boundary condition on equation (2.3) for w we insist that w 
shall be periodic in x and y, thus ensuring that w is bounded a t  infinity. We shall 
assume that the functionf(2) is of one sign, and is the case for the lowest mode 
instability, and we shall consider convective flows of the simple class ( 2 . 2 ) .  

Particular solutions of (2.3) that may be found in the literature are 

(i) w = cos kx cos Icy (a2 = 2k2) ,  (2.12) 

(iii) w = 2 cos (Zx43) cos Zy + cos 2Zy (a2 = 4P), (3.14) 
(ii) w = cos kxcosly (a2 = kz+Z2), (2.13) 

where k and I are wave-numbers. These three examples are usually described 
as the square, rectangular and hexagonal cases. From (2.6) the projected stream- 
line patterns corresponding to each of these three cases can be calculated by 
standard methods (e.g. Stoker 1950); indeed, for cases (i) and (ii), equation (2.6) 
can be solved exactly (e.g. Bisshopp 1960, equation (28)). The results are indi- 
cated in figures 1, 2 and 3, where solid lines and curves indicate (schematically) 
projected streamlines. The dotted lines and curves represent w = 0, i.e. curves 
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of zero vertical velocity. Although, in each case, we have drawn the projected 
streamlines as stemming from the origin 0, they might equally well have been 
drawn as entering 0; which case occurs depends on the height z through the 

't 

FIGURE 1. Square cell. 

"t 

FIGURE 2.  'So-called' rectangular cell, k2 = 3Z2. 
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amplitude functionf(z) A(t) .  We shall return to this point in $5, where we discuss 
the actual three-dimensional flow in convection cells. 

In figures 1 and 2 the points 0, A, B, C, D, E, F, G, H and N are nodes of the 
differential equation (2.6), A, B, C, D being unstable, and the others stable 
nodes. The points J, K, L, M, on the other hand, are saddle points. In  figure 3, 
0, Q, P are unstable nodes, A, B, c1, D, E, F are stable nodes, and G, H, I, J, K, L 

E 
FIGURE 3. Hexagonal cell. 

are saddle points. Projected streamlines generally pass from an unstable node 
to a stable node, but exceptional projected streamlines pass from an unstable 
node to a saddle point (figure 1, OJ )  or from a saddle point to a stable node 
(figure 1, JD). 

Now let us consider the curves w = 0. In  each of figures 1 and 2 there is a net- 
work of dotted straight lines, parallel to the x and y axes, on which w = 0. 
Thus in neighbouring dotted squares (figure 1) or rectangles (figure 2 ) ,  fluid 
rises ( W > 0) and descends ( W < 0). In figure 3, on the other hand, the situation 
is quite different. Here we have a set of near-circular closed curves, w = 0, none 
of which intersects another member of the set. In  fact, each dotted curve lies 
entirely within its own bounding hexagon formed from projected streamlines. 
Thus, in figure 3, near circular regions centred at  0, P, Q are ‘islands’ of, say, 
rising fluid in a ‘sea ’ of descending fluid. [The sign of W depends on the sign of 
f ( z )  A(t) ,  w(z, y) being positive at the origin.] 

The question we now ask is: what are the features if any, of figures 1, 2 ,  3, 
that are consistent with experimental observation? First, an observed cellular 
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boundary has no fluid flowing through it. Now we know that the vertical 
cylindrical surface, associated with a projected streamline, contains particle 
paths, filament lines and streamlines, so that no fluid particle passes through 
such a surface. This suggests that we look for the cellular boundaries among those 
vertical cylindrical surfaces which have associated projected streamlines. But 
of this multitude of projected streamlines, which ones are to be considered as 
likely candidates? To resolve this question, we invoke what seems to be the 
crucial experimental fact; namely that on the cellular boundary the vertical 
fluid velocity is observed to have the same sign everywhere. 

In  the case of figure 3, the answer is quite clear, since there are certain con- 
tinuous sets of projected streamlines that do not intersect the curves w = 0, 
e.g. the straight lines AB, BC, etc. The hexagon ABCDEF, formed by combina- 
tion of six of these straight lines, can be a cellular boundary capable of experi- 
mental observation. If (cf. ( 2 . 2 ) ) f ( z )  A( t )  is positive, fluid rises in the dottednear- 
circle and descends in the region between that closed curve and the hexagon 
ABCDEF. This could correspond to the cells observed by Silveston in liquids. 
Iff(z) A(t)  is negative fluid descends in the dotted near-circle and ascends in the 
region between that closed curve and the hexagon. This could correspond to the 
cells observed by de Graaf & van der Held in air. We note that, with the present 
interpretation of the projected streamline pattern, the hexagon BOFQRP is not 
acceptable as a cellular boundary, because it intersects curves w = 0. Moreover, 
we reject Chandrasekhar’s remark (1961, p. 50) that ‘The pattern which we con- 
sidered as hexagonal can be considered, equally, as triangular [since] the unit 
cell is then represented by the equilateral triangle [OQP]’. Such a triangle cuts 
the curves w = 0, and is not, therefore, what would be observed and described as 
a cell. Our present point of view is that the form (2.14) for w is associated with a 
unique set of cells, which would be observed by the methods described earlier; 
the cells are the hexagons with centres at  0, P, Q, etc., other hexagons, triangles 
or shapes being unacceptable. 

Let us turn now to figures 1 and 2 .  In  these figures there are no projected 
streamlines that do not intersect the dotted lines on which zu = 0. Consequently 
we can assert that the flows represented by (2.12) and (2.13) do not correspond to 
patterns that have been observed and described as cellular. Let us now consider 
Rayleigh’s interpretation. In  the case of (2.12) and figure 1, he suggested that 
square ABCD should be regarded as a cellular boundary. It is instructive to 
note the feature of the boundary ABCD that led Rayleigh to choose it rather than 
one of the others, as indicated by the following quotation (Rayleigh 1916, p. 443): 
‘An experimental determination of [az of our first equation (2.3)] might be 
made by observing the time of vibration under gravity of water contained in a 
trough with vertical sides and of corresponding section, which depends upon the 
same differential equations and boundary conditions. The particular vibration 
in question is not the slowest possible, but that where there is a simultaneous 
rise a t  the centre and fall at the walls all round, with but one curve of zero eleva- 
tion between.’ The equation to which Rayleigh refers is our first equation (3.3) 
and the boundary condition is (2.10). Rayleigh thus selected a boundary for 
which the vertical velocity is everywhere of one sign (though in practice he 
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permitted zeros). This condition permits the selection of ABCD, as a boundary 
of a cell centred at  0, but it does not exclude other possibilities. For example, 
the square OFNG is equally possible as a boundary, but of a cell centred at B. 
We are thus led to an ambiguity: the pattern of figure 1 can be regarded either 
as a set of convection cells centred at 0, E, F, G, H, etc., or as a set of cells centred 
at  A, B, C, D etc., As is indicated by the quotation above, Rayleigh’s criterion 
to distinguish a cellular boundary is clearly the same as the one favoured here 
(provided we ignore his allowing of zero of w). But we believe, contrary to 
Rayleigh’s remarks, that this criterion, when applied to (3.13) and figure 1,  
shows that there are no cellular boundaries that would correspond to observa- 
tion. The resolution of the ambiguity of two possible sets of cells seems to be, 
therefore, that (2.13) is not a valid mathematical model of what would be observed 
and described as a pattern of square cells; in our view there are no cells in this 
observational sense. 

In  contrast to the discussion of Rayleigh, those of Bisshopp and Chandrasekhar 
are quite misleading from an observational point of view, since both have a 
figure that is apparently equivalent to the square AODE of our figure 1, Bisshopp 
(1960, figure l a )  describing it as ‘The square cell’ and Chandrasekhar (1961, 
figure 6)  as ‘The streamlines in the horizontal plane for the square cell’. In  no 
sense does AODE seem to correspond to what experimentalists observe and 
describe as a cell. 

Let us turn now to (2.13) and figure 3. In  the literature this is often described 
as a ‘rectangular cell’. For example, Chandrasekhar (1961, p. 45), with lc = %/L, 
and 1 = 2nr/L,, describes the cells associated with (2.13) as ‘rectangles with sides 
of lengths Lz and Lv’. In  our terminology these lengths are 2n/k and 3n/l, so that 
Chandrasekhar appears to suggest that the rectangle EFGH (figure 2) should be 
regarded as a cell; on the other hand Chandrasekhar’s figure 5 (1961, p. 46) is 
apparently a sketch corresponding to the rectangle AODE of our figure 2 ,  
and is labelled ‘The streamlines in the horizontal plane for a rectangular cell’ 
(see also Bisshopp 1960, p. 380, figure 5,  where a similar diagram is labelled ‘The 
rectangular cell ’). Both of these rectangular boundaries suggested by Chandrase- 
khar cut the dotted lines w = 0, as can be seen from figure 3. Consequently we 
assert that (2.13) is not a valid mathematical model of a cellular pattern that 
could be observed and described as rectangular. 

We see that, in figure 2, there are no curves that do not intersect the dotted 
curves w = 0. But there are curves on which w has one sign, if zeros are permitted; 
curves such as DJA for example, are of this type, and correspond to straight lines 
such as DJA in figure 1. It might be suggested, therefore, that we could select 
the closed curve AKBLCMDJ as a cellular boundary, with 0 as the cell centre. 
But equally we could select the curve EJOMH, with its mirror image in the line 
EDH. We are thus led to an ambiguity similar to that of figure 1, namely, that 
figure 2 may be regarded as representing either a set of cells centred at 0, E, F, G, 
H, etc., or a set of cells centred at  A, B, C, D, etc. The resolution of the ambiguity 
seems to be that there are no projected streamlines in figure 2 that correspond 
to what in experiment have been observed and described as cellular boundaries; 
therefore, in our view, there are no cells in this observational sense. 
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Having discussed figures 1 , 2  and 3 in some detail, we are led inevitably to the 
point of view that, while figure 3 may be regarded as a mathematical prototype 
of a convective pattern of cells of the type that experimentalists observe and 
describe as such, figures 1 and 2 may not be so regarded. The essential, prototype 
feature of figure 3 is that there are separate closed curves w = 0, between which 
certain projected streamlines pass. The latter projected streamlines, e.g. those 
forming the hexagon ABCDEF, may be regarded as the projections of cellular 
boundaries. In  figures 1 and 2 there are no separated closed curves w = 0, 
there are no projected streamlines that do not intersect curves w = 0, and we are 
left with the ambiguity described earlier. As a corollary we assert that (2.12) 
and (2.13) are not mathematical models of what would, in observation, be 
described as square and rectangular cells. 

There are at  least two questions that derive immediately from this discus- 
sion. First, can the forms (2.12) and (2.13) be altered slightly so as to bring figures 
1 and 2 into the prototype form exemplified by figure 37 The answer is that in 
certain circumstances, at any rate, they can, as shown in 94. Secondly, if we 
introduce higher-order amplitude terms into (2.14), so that we relax the limit 
v -+ 0, can the vertical cylindrical surface of projection ABCDEF still represent 
a cellular boundary? The answer is that we have shown this to be the case if 
second-order terms in amplitude are included, as described in the next paragraph. 

Typical non-linear calculations of a convective flow field, but valid only to 
second order in amplitude, have been done with the artificial free-free boundary 
conditions of zero shear stress at upper and lower boundaries. According to 
Palm (1960), with his corrections and additions as quoted by Segel & Stuart 
(1962), the vertical velocity W for a hexagonal cell is of the form 

W = [A(t)  sin hz + B(t) sin 3hx] [3 cos Ex cos Zy + cos 2Zy] 
+ C(t)  [ 2  cos kx cos 31y + cos 2kx] sin 2hx, (2.16) 

where A ,  B, C represent Palm's Alll, AOz2, AZo2, and k = 143. Whereas A is of 
first order in amplitude, B and C are of second order and are given by , 

B = ( - M)-l[HyA + GA'], 

C = - 4P, A2, (2.16) 

where M ,  H ,  G and P are constants and y is a small parameter representing the 
variation of viscosity with temperature. The variation of A with t is described 
in Segel & Stuart (1962) as the function Z(t). Using (6.10) and (6.11) of Palm 
(1960), since they are valid for our purpose, we find the following for the horizontal 
velocity components U and 8: 

U = - (kh/212) ( A  cos hz  + 2B cos 2hx) sin kxcos l y  

- (hC/k )  (sinkxcos3Zy+sin21%x)cos2hz, (2.17) 

V = - ( A / % )  ( A  cos hz + 3B cos 3hx) (cos kx sin Zy + sin 2Zy) 
-(AC/1)coskxsin31ycos2hz. (2.18) 

Substitution of (2.15) to (2.18) in (2.1) indicates that the projected-streamline 
equation (3.5) is not generally valid. But it is possible to show that some steady 
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vertical cylindrical surfaces, in particular those of which hexagons such as 
ABCDEF of figure 3 are projections, do satisfy equations (2.1) for all z and t. 
Consequently, these surfaces contain particle paths, filament lines and stream- 
lines, even though not all solutions are of this type. Moreover, it can be shown 
that W + 0 on surfaces such as that whose projection is ABCDEF: although the 
surfaces W = 0 are no longer vertical cylinders, they do not intersect those verti- 
cal cylindrical surfaces which, for CT -+ 0,  we found to be the cellular boundaries. 
Consequently the latter may still be regarded as cellular boundaries. We may 
say, therefore, that to second order in amplitude, the prototype picture of 
figure 3 is essentially unchanged, at least for free-free conditions. (In the cases 
of figures 1 and 2 ,  the inclusion of higher-order amplitude terms would not neces- 
sarily remove the ambiguity inherent there.) 

We come next to the definition of a cellular boundary. In  the past it  has 
often been defined to be (among other things) a vertical surface of symmetry 
on which the normal gradient of vertical velocity vanishes (cf. Chandrasekhar 
1961, p. 43). After our discussion in terms of particle paths, such conditions of 
symmetry do not seem to be primary ones; rat,her the condition that no particle 
passes through the cellular boundary seems more natural. (The earlier con- 
ditions probably arose from a more restrictive discussion in terms of linearized 
theory, since those conditions derive from ours in that case.) In  addition we 
wish to incorporate the observational fact noted earlier that the vertical velocity 
on a (vertical) cellular boundary is everywhere of one sign. In  the next section 
we formulate a definition of what, in a mathematical description, corresponds 
to a surface which experimentalists observe and describe as a cellular boundary. 
Although we restrict attention to what have often been observed, namely 
cellular boundaries that are steady vertical cylinders, it  is not clear that they 
must be of this form. It may be noted here that Veronis (1959) has given a dis- 
cussion of the flow patterns in a more complex case, that of convection cells in a 
rotating system. 

3. A definition 
If the mathematical model of the flow field has steady vertical cylindrical 

surfaces satisfying the conditions given below, then those surfaces correspond to 
cellular boundaries that might be observed and described as such. 

(i) No particle of fluid passes through a cellular boundary surface at  any time. 
(ii) The vertical velocity on a cellular boundary surface must be everywhere 

of one sign and must not be zero at  any point except on the two horizontal, 
or nearly horizontal, bounding surfaces. 

As a corollary of (i) we note that the boundary surface must contain particle 
paths, filament lines and streamlines. 

For a single mode of linearized theory, or of non-linear theory to order A(t ) ,  
i.e. with (T + 0, the result (aW/an), = 0 applies, where (aW/an), denotes the 
derivative of the vertical velocity normal to the boundary surface. In that 
simple case, (i) and symmetry imply this result. It seems unnecessary, however, 
to impose (awlan), = 0 as an independent condition in more general cases; 
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but we note that for the hexagonal cell, with free-free conditions and to second 
order in amplitude, the statement is valid on the cellular boundaries. It is likely 
that, in some cases, conditions (i) and (ii) may define cellular boundaries which 
are realizable in experiment and on which ( a  Wpn) ,  + 0. 

It is noted that, because of (ii), we exclude consideration of the physically 
unimportant higher modes, theoretically possible a t  much higher Rayleigh 
numbers, because f ( z )  changes sign for such modes. We restrict attention to the 
lowest mode, for which f ( z )  is of one sign, because this is the case observed 
experimentally. 

4. Further theoretical discussion 
For the mathematical models with velocity fields (2.12) and (2.13), it has been 

demonstrated that there are no surfaces that would, in experimental observation, 
be described as cellular boundaries. In  actual experiment, flow fields rarely have 

F At nlk E F At nlk E 

N 

FIGURE 4. Modified square cell. 

the relatively simple character envisaged in mathematical theory, and it is 
natural to suppose that more complicated models might yield cellular boundaries 
in cases corresponding to (2.12) and (3.13), that are satisfactory from the observa- 
tional point of view. One would then expect figure 1 to be converted into a form 
such as is shown in figure 4; a diagram of this kind was first given by Avsec 
(1939, p. 148). The present writer has not constructed a mathematical model for 
figure 4 that is completely satisfactory, but he has done so for a case which is a 
generalization of the so-called ‘rectangular’ case (3.13), when k = 143. We 
therefore concentrate on that example. 

Segel & Stuart (1962) discuss a solution of (2.3) for w(x, y) of the form (case V 
of that paper) 

where k2 = 312 and the first component of (4.1) has been normalized to unit 
amplitude. The overall wave number of (4.1) is 21 and D = 1 represents the 
hexagonal cell discussed in 0 2. We shall consider only D positive, since negative 
values can be treated by translation of axes, The form (4.1) occurs naturally in 

(4.1) u = cos lix cos ly  + &D cos 21y, 
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the non-linear theory to represent a steady velocity field, when the viscosity is 
allowed to vary with temperature. This is an example where the incorporation of 
a small effect (D + 0 )  can bring about significant qualitative changes. 

When D < +, it  can be shown that the streamline pattern is essentially similar 
to that of figure 2. But the curves w = 0, however, show a significant difference. 
Instead of the rectangular mesh (dotted) of figure 3,  we have curves lying entirely 

t” 

FIGURE 5 .  Modified rectangular cell. Case of D = 1/42. 

within certain projected streamline contours, for example within DJAKBLCM. 
We may regard this contour as the boundary of a cell centred at 0. Similarly 
E, F, G and H may be regarded as cell centres, but the points A, B, C and D may 
not be so regarded because their corresponding boundaries cut the curves to = 0. 
Thus the ambiguity of figure 2 has been removed, even for very small D, and the 
resulting pattern corresponds to a unique set of cells. 

When + < D < 1, a different pattern of projected streamlines occurs, and a 
typical case (D = 1/42) is shown schematically in figure 6. It can be shown that 
w is everywhere negative within chain-dotted triangles such as BDS and there- 
fore on projected streamline contours such as ACEGIK, and such contours may 
be regarded as cell boundaries. The curves of uy = 0 are shown dotted. One slight 
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ambiguity remains in the form of figure 5; we have assumed in the arguments 
leading to this figure that the streamline BC is parallel to they axis at C, whereas 
it might have zero gradient. If the latter were the case the diagram would be 
modified in the neighbourhood of C and like points. 

For D > 1 the cellular boundaries have somewhat different shapes, but we 
shall not pursue these cases further, mainly because Segel & Stuart’s (1962) 
paper indicates that they are less important. 

It is shown in Segel & Stuart’s paper that the cellular pattern (4.1) is ‘stable ’, 
in the sense defined there, if ID( < 1. Now, since we know that the origin, 0, 
is definitely a cell centre (while B and D of figure 2 cannot be in the present 
formulation), we can calculate the direction of flow at the cell centres for the 
dominant (i.e. first-order) part of the non-linear solution. We find from Segel 
& Stuart (1962) that the flow is upwards at the centre if the kinematic viscosity 
decreases as the temperature increases (as in most liquids), and downwards at  
the cell centres if the kinematic viscosity increases with temperature (as in most 
gases). These directions of flow are the same as those obtained by Segel & Stuart 
(1962) for the hexagonal cell (with centre at 0 in figure 3)) and are in accordance 
with experiment. Moreover, since figure 5 contains cells of roughly hexagonal 
shape (and this would be true for 4 < D < 1)) these solutions as well as the stan- 
dard ‘hexagonal’ solution might correspond to the hexagonal cells observed in 
experiment. Thus, in terms of the parameter q of Segel & Stuart’s paper, the 
range of solutions corresponding to observed stable hexagonal cellular patterns 
has been extended to lower values of q and therefore to larger values of the 
Rayleigh number. (The parameter q = u d ,  where u is proportional to the gradi- 
ent of kinematic viscosity with temperature and E is almost proportional to the 
difference between actual and critical Rayleigh numbers.) 

The reasoning given in the preceding paragraph is explained by Segel & 
Stuart (1962), who discussed the hexagonal case without a complete discussion 
of why 0 of figure 3 can be a cell centre, while A cannot be. The definition given 
in this paper clarifies their work, by showing precisely the locations of cell centres 
and cellular boundaries in the mathematical model, and thereby permitting 
comparison with observation of the predicted flow directions and cell shapes. 

5. The flow in convection cells 
In  the absence of some specific interpretation, figures 1-5 may be misleading 

as to the actual flow patterns. If we regard the projected streamlines as real 
streamlines in two dimensions, we are forced to inquire as to  the fate of fluid 
arriving at the stable nodes. In  fact, of course, no such question arises, because 
the projected streamlines must be regarded merely as a guide in planform to the 
three-dimensioncxl flow patterns. 

An attempt is made in figure 6 to illustrate actual streamlines, particle paths 
and filament lines (which are all coincident) for the (steady) hexagonal cell 
of figure 3. The curve DOA represents two particular curved projected stream- 
lines OA and OD,from the unstable node0 to the stable nodes Aand D.Thecylin- 
dricalsurface, of which DOA is the projection, is shown in figure 6 as DOAA’O‘D, 
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and the curves shown schematically are streamlines lying in that surface. (The 
dotted straight lines represent the boundaries, in perspective, of the hexagonal 
convection cell.) The streamlines are closed curves and only the boundary stream- 
lines, such as OAA’O’, pass through the nodes of the projected picture of figure 3. 
Streamlines can be drawn in any cylindrical surface corresponding to a given 

FIGURE 6. Streamlines in a hexagonal cell. 

projected streamline, those in figure 6 being typical. For the straight projected 
streamline, OG, OB of figure 3, the corresponding vertical cylindrical surfaces 
are plane; streamlines have been computed by Reid & Harris (1959) and are 
illustrated in their paper and in Chandrasekhar’s book (1961, p. 51). For curved 
cylindrical surfaces computations may be based on equations (2.6) and (2.7) of 
this paper, f ( z )  and w(x,y) being given: the time taken for a particle to pass 
between two given points is then determined by (2.8). Whether 0 is taken to be 
an unstable or stable node of the projected streamline pattern is now seen to be 
immaterial, since it merely reflects the particular height z of the plane considered. 

Although the direction of flow in figure 6 is downwards at the cell centre (as 
in most gases in Rayleigh thermal convection), the streamlines would be similar 
if the flow were upwards at the cell centre (as in most liquids). The sign of the 
vertical velocity is the same at all centres in figures 3 and 5 and theories such as 
those of Palm (1960) and Segel & Stuart (1962) yield correct results for the sign 
(for figures 3 and 5 ) .  

It seems likely that there are cases in which the cellular boundaries and the 
surfaces ui = 0 are not steady vertical cylinders. Such possibilities remain to 
be investigated. It remains also to evaluate fully the effects of finite amplitude 
beyond velocity corrections of second order. It is emphasized that here we have 
considered only the simplest convection patterns. Veronis’s paper indicates 
some of the complexities which arise when, for example, rotation is included. 
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6. Conclusions 
(i) A discussion of the experimental observations has led to a definition 

( 3  3) of those surfaces which, in a mathematical model, correspond to what are 
observed and described as cellular boundaries in thermal convection. Attention 
has been confined to the case where the latter are steady and vertical. 

(ii) The classical hexagonal cell of linearized theory has been shown to be the 
prototype mathematical pattern, irrespective of its special shape, of cellular 
patterns that are observed experimentally. The quintessence of the prototype 
pattern is that the vertical cellular boundary, through which no particle of fluid 
passes, encloses, but is not intersected by, a surface on which the vertical velocity 
is zero. 

(iii) If second-order amplitude effects are included, the same vertical hexagonal 
cylinders as in linearized theory form the cellular boundaries in the hexagonal 
case, at  least for free-free boundary conditions. It may be conjectured that this 
result will be true with much larger finite-amplitude effects, present at  larger 
Rayleigh numbers, and for more realistic boundary conditions. 

(iv) Attempts at  interpretation of the classical square and so-called ‘rec- 
tangular’ cases of linearized theory have been shown to lead to ambiguities; 
these cases are not of the prototype form, and are not valid mathematical models 
of square and rectangular patterns. We assert that, for these models, there are 
no cells in the present observational sense. 

(v) In  a special case, the mathematical solution of so-called ‘rectangular’ 
kind has been modified by a perturbation that can be as small as we please, to 
yield a set of cells of curved, not rectangular form. The perturbation is associated 
with the small, but non-zero, variation of viscosity with temperature. 

(vi) The definition has been shown to be vital to give an unambiguous state- 
ment of cellular boundaries and cell centres in hexagonal and other cases, so 
that comparison with observation can be made as to the predicted jlow directions and 
cell shapes. 

The author is indebted to A. Davey, L. A. Segel and J. Watson for extremely 
helpful discussions, and to the referees for their constructive comments on an 
earlier version of the paper. This work was done as part of the research programme 
of the National Physical Laboratory, and is published by permission of the 
Director. 
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